kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Конспект по алгебре Правила нахождения производных

Нажмите, чтобы узнать подробности

Тип урока: обобщение ЗУН

Цели урока: 1) Обучающие: закрепить и проверитьзнания, умения, навыки учащихся по теме «Формулы и правила дифференцирования».

2)Развивающие: развивать мыслительную деятельность учащихся, способность самооценки и взаимооценки; формировать умения чётко и ясно излагать свои мысли.

3)Воспитательные: воспитывать умение работать с имеющейся информацией, умение слушать товарищей, воспитывать уважение к предмету.

Ход занятия:

I. Организационный момент (1 мин)

Приветствие. Проверка домашнего задания

II. Мотивация урока.

Сегодня мы с вами отправляемся в далекое путешествие, чтобы познакомиться с «7 чудесами света».

А плыть к этим чудесам нам предстоит по бескрайнему Математическому океану.

На каждом этапе вы будете оцениваться лимитами.

III. Путешествие к «7 чудесам света».

1-ое чудо: Египет, пирамида Хеопса. (8 мин)

На левом берегу Нила, у города Гиза, над пустыней возвышается огромная пирамида. Вплоть до конца XIX века она была самым высоким сооружением на земле. Ее высота достигала 146 метров.

А чтобы мы с вами смогли подняться на ее вершину, нужно вспомнить определения. За каждый правильный ответ вы зарабатываете максимально 2 лимит.

1.Что называется производной функции в точке?( Если разностное отношение имеет предел при Δx, стремящемся к нулю, то этот предел называют производной функции y=f (x) в точке x)

2.Какая функция называется дифференцируемой в точке? (если в точке x функция имеет производную, то функция f(x) в этой точке называется дифференцируемой)

3.Что значит вычислить производную по алгоритму?

1)Дать аргументу приращение Δx;

2) Соответственно приращению аргумента Δx найти приращение функции Δy= (x+Δx)-f(x);

3) Найти отношение приращения функции к приращению аргумента );

4) Определить предел от отношения при т.е )

4.Какие правила дифференцирования вы знаете? (Производная суммы, произведения, частного, степенной функции)

5. Дайте определение непрерывности функции в точке (если функция f(x) определена в точке и предельное значение функции при равно ее значению в этой точке, то f(x) называется непрерывной функцией в точке )

6. Дайте определение непрерывности функции на отрезке (если функция f(x) непрерывна в каждой точке множества (отрезка), то она называется непрерывной на данном множестве (отрезке))

7. Приз

8. Что называется предельным значением функции?(если число а, к которому стремится аргумент x, входит в область определения функции, то значение функции в этой точке есть и предельное значение функции)

9.Приз

2-е чудо: Олимпия, храм Зевса( 5 мин)

Считали в Греции того, кто не повидал другой гениальный памятник - статую Зевса в Олимпии. Это произведение выдающегося греческого скульптора Фидия погибло в V веке новой эры. Вам чтобы зайти в храм и посмотреть на статую, нужно записать правила нахождения производных. Записав все правила правильно, вы зарабатываете максимум 2 лимит

1. Производная суммы: (u + v)'=u'+v';

2. О постоянном множителе: (Cu)'=Cu';
3. Производная произведения: (uv)'=u'v+uv';
4. Производная дроби: (u/v)'=(u'v-uv')/v2;

5. Производная степенной функции:

3-е чудо: Храм Артемиды (7 мин)

По проекту архитектора Херсифрона в древнегреческом городе Эфесе был сооружен храм Артемиды.Богиню охоты Артемиду почитали во многих городах Малой Азии. Эфесцы решили построить в ее честь святилище небывалой красоты.

А теперь вам нужно заполнить таблицу производных. Если заполните таблицу без единой ошибки, вы получаете 1 лимит.

На экране появляется слайд «Таблица производных функций».

Функция

Производная

0

1

n

cos x

-sin x

4-е чудо: Мавзолей в Галикарнасе (8 мин)

Галикарнас - город на побережье Малой Азии, столица Карийского царства - дал название еще одному из чудес света - знаменитой гробнице царя Мавсола.

Чтобы увидеть это чудо, решим задачи на нахождение производных функции: Решив задачу правильно, вам присваевается 3 лимит. Открываем учебник, решаем № 186 (б,в)

Найдите производные функции:

а)

Решение.

б) f(x)=(

Решение. f?(x)=(()?=?+?2x2

в) f(x)=

f?(x)=(

)=

Ответ: б) ; в)

5-е чудо: Колосс Родосский (3 мин)

В языках многих народов сохранилась память и о другом чуде света - Колоссе Родосском. "Колосс, колоссальный", - часто говорим мы, когда что-то поражает нас своей грандиозностью, как поразили современников размеры гигантской статуи бога Гелиоса на острове Родос. А теперь думаю, что можно немного отдохнуть перед дальнейшей дорогой.

Физкультминутка.

6-е чудо: Александрийский маяк. (7 мин)

К сожалению, только остатки фундамента сохранились и от шестого чуда света - Александрийского маяка. Его построили на скалистом берегу острова Фарос, близ Александрии, в 285 году до нашей эры.

Вам на дом было задано найти исторические справки о возникновении производной. Давайте послушаем, что же вы узнали. За домашнеезадание вы получите максимально 2 лимит.

7-е чудо: «Висячие сады» Семирамиды ( 5 мин)

Две тысячи пятьсот лет назад вавилонский царь Навуходонаср построил для своей жены Амитисы висячие сады - Амитиса родилась в горной Мидии, степи и равнины Вавилонии нагоняли на нее тоску и уныние.

Чтобы увидеть эти сады, давайте расшифруем кроссворд. За правильно отгаданный кроссворд, вы получите 1 лимит

1.Советский математик, механик, академик АН СССР.

2. Этот швейцарский механик и математик впервые употребил обозначение приращения (аргумента, функции) греческой буквой дельта Δ

3. Казахстанский математик, который в 2014 году решил одну из проблем тысячелетия, решив одну из 7 уравнении Навье-Стокса

4. Правило или закономерность, при котором каждому значению х из множества Х соответствует единственное значение у из множетва У

5. Промежуток, содержащий данную точку

6. Французский математик, астроном и механик, который в 1797 году ввел краткое обозначение производной штрихом - f?(x)

7. Швейцарский математик 18 века

8.Разность значении аргумента в двух ее точках

9. Обозначение lim - сокращено от латинского слова limes – означает ….

10.Советский математик, педагог, известный каждому школьнику, как автор пособия «Четырехзначные математические таблицы»

IV. Подведение итогов

V. Домашнее задание: №187,188

VI. Ребята, вы сегодня хорошо поработали. Каждый из вас заслужил оценку. 

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Конспект по алгебре Правила нахождения производных »

Дата:

Тема: Правила нахождения производных. Решение задач

Тип урока: обобщение ЗУН

Цели урока: 1) Обучающие: закрепить и проверитьзнания, умения, навыки учащихся по теме «Формулы и правила дифференцирования».

2)Развивающие: развивать мыслительную деятельность учащихся, способность самооценки и взаимооценки; формировать умения чётко и ясно излагать свои мысли.

3)Воспитательные: воспитывать умение работать с имеющейся информацией, умение слушать товарищей, воспитывать уважение к предмету.

Ход занятия:

I. Организационный момент (1 мин)

Приветствие. Проверка домашнего задания

II. Мотивация урока.

Сегодня мы с вами отправляемся в далекое путешествие, чтобы познакомиться с «7 чудесами света».

А плыть к этим чудесам нам предстоит по бескрайнему Математическому океану.

На каждом этапе вы будете оцениваться лимитами.

III. Путешествие к «7 чудесам света».

1-ое чудо: Египет, пирамида Хеопса. (8 мин)

На левом берегу Нила, у города Гиза, над пустыней возвышается огромная пирамида. Вплоть до конца XIX века она была самым высоким сооружением на земле. Ее высота достигала 146 метров.

А чтобы мы с вами смогли подняться на ее вершину, нужно вспомнить определения. За каждый правильный ответ вы зарабатываете максимально 2 лимит.

1.Что называется производной функции в точке?( Если разностное отношение имеет предел при Δx, стремящемся к нулю, то этот предел называют производной функции y=f (x) в точке x)

2.Какая функция называется дифференцируемой в точке? (если в точке x функция имеет производную, то функция f(x) в этой точке называется дифференцируемой)

3.Что значит вычислить производную по алгоритму?

1)Дать аргументу приращение Δx;

2) Соответственно приращению аргумента Δx найти приращение функции Δy= (x+Δx)-f(x);

3) Найти отношение приращения функции к приращению аргумента );

4) Определить предел от отношения при т.е )

4.Какие правила дифференцирования вы знаете? (Производная суммы, произведения, частного, степенной функции)

5. Дайте определение непрерывности функции в точке (если функция f(x) определена в точке и предельное значение функции при равно ее значению в этой точке, то f(x) называется непрерывной функцией в точке )

6. Дайте определение непрерывности функции на отрезке (если функция f(x) непрерывна в каждой точке множества (отрезка), то она называется непрерывной на данном множестве (отрезке))

7. Приз

8. Что называется предельным значением функции?(если число а, к которому стремится аргумент x, входит в область определения функции, то значение функции в этой точке есть и предельное значение функции)

9.Приз

2-е чудо: Олимпия, храм Зевса( 5 мин)

Считали в Греции того, кто не повидал другой гениальный памятник - статую Зевса в Олимпии. Это произведение выдающегося греческого скульптора Фидия погибло в V веке новой эры. Вам чтобы зайти в храм и посмотреть на статую, нужно записать правила нахождения производных . Записав все правила правильно, вы зарабатываете максимум 2 лимит

1. Производная суммы: (u + v)'=u'+v';

2. О постоянном множителе: (Cu)'=Cu';
3. Производная произведения: (uv)'=u'v+uv';
4. Производная дроби: (u/v)'=(u'v-uv')/v2;

5. Производная степенной функции:

3-е чудо: Храм Артемиды (7 мин)


По проекту архитектора Херсифрона в древнегреческом городе Эфесе был сооружен храм Артемиды.Богиню охоты Артемиду почитали во многих городах Малой Азии. Эфесцы решили построить в ее честь святилище небывалой красоты.

А теперь вам нужно заполнить таблицу производных. Если заполните таблицу без единой ошибки, вы получаете 1 лимит.

На экране появляется слайд «Таблица производных функций».











Функция

Производная


0


1


n






cos x


-sin x






4-е чудо: Мавзолей в Галикарнасе (8 мин)

Галикарнас - город на побережье Малой Азии, столица Карийского царства - дал название еще одному из чудес света - знаменитой гробнице царя Мавсола.

Чтобы увидеть это чудо, решим задачи на нахождение производных функции: Решив задачу правильно, вам присваевается 3 лимит. Открываем учебник, решаем № 186 (б,в)

Найдите производные функции:

а)

Решение.

б) f(x)=(

Решение. f΄(x)=(()΄=΄+΄2x2

в) f(x)=

f΄(x)=(

)=

Ответ: б) ; в)

5-е чудо: Колосс Родосский (3 мин)

В языках многих народов сохранилась память и о другом чуде света - Колоссе Родосском. "Колосс, колоссальный", - часто говорим мы, когда что-то поражает нас своей грандиозностью, как поразили современников размеры гигантской статуи бога Гелиоса на острове Родос. А теперь думаю, что можно немного отдохнуть перед дальнейшей дорогой.

Физкультминутка.

6-е чудо: Александрийский маяк. (7 мин)

К сожалению, только остатки фундамента сохранились и от шестого чуда света - Александрийского маяка. Его построили на скалистом берегу острова Фарос, близ Александрии, в 285 году до нашей эры.

Вам на дом было задано найти исторические справки о возникновении производной . Давайте послушаем, что же вы узнали. За домашнеезадание вы получите максимально 2 лимит.

7-е чудо: «Висячие сады» Семирамиды ( 5 мин)

Две тысячи пятьсот лет назад вавилонский царь Навуходонаср построил для своей жены Амитисы висячие сады - Амитиса родилась в горной Мидии, степи и равнины Вавилонии нагоняли на нее тоску и уныние.

Чтобы увидеть эти сады, давайте расшифруем кроссворд. За правильно отгаданный кроссворд, вы получите 1 лимит

1.Советский математик, механик, академик АН СССР.

2. Этот швейцарский механик и математик впервые употребил обозначение приращения (аргумента, функции) греческой буквой дельта Δ

3. Казахстанский математик, который в 2014 году решил одну из проблем тысячелетия, решив одну из 7 уравнении Навье-Стокса

4. Правило или закономерность, при котором каждому значению х из множества Х соответствует единственное значение у из множетва У

5. Промежуток, содержащий данную точку

6. Французский математик, астроном и механик, который в 1797 году ввел краткое обозначение производной штрихом - f΄(x)

7. Швейцарский математик 18 века

8.Разность значении аргумента в двух ее точках

9. Обозначение lim - сокращено от латинского слова limes – означает …..

10.Советский математик, педагог, известный каждому школьнику, как автор пособия «Четырехзначные математические таблицы»

IV. Подведение итогов

V. Домашнее задание: №187,188

VI. Ребята, вы сегодня хорошо поработали. Каждый из вас заслужил оценку.


Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 10 класс.
Урок соответствует ФГОС

Скачать
Конспект по алгебре Правила нахождения производных

Автор: Билялова Айслу Талгатовна

Дата: 25.03.2015

Номер свидетельства: 191393

Похожие файлы

object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(25) ""Производная" "
    ["seo_title"] => string(14) "proizvodnaia-2"
    ["file_id"] => string(6) "188718"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1426738437"
  }
}
object(ArrayObject)#876 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(157) "Конспект урока по алгебре в 10 классе: "Применение производной к исследованию функции" "
    ["seo_title"] => string(94) "konspiekt-uroka-po-alghiebrie-v-10-klassie-primienieniie-proizvodnoi-k-issliedovaniiu-funktsii"
    ["file_id"] => string(6) "154801"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1421216239"
  }
}
object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(73) "Конспект урока алгебры и начала анализа"
    ["seo_title"] => string(43) "konspiekt-uroka-alghiebry-i-nachala-analiza"
    ["file_id"] => string(6) "281260"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1453485600"
  }
}
object(ArrayObject)#876 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(145) "Конспект урока по математике на тему "Уравнение касательной к графику функции" "
    ["seo_title"] => string(85) "konspiekt-uroka-po-matiematikie-na-tiemu-uravnieniie-kasatiel-noi-k-ghrafiku-funktsii"
    ["file_id"] => string(6) "101815"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1402456143"
  }
}
object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(125) "Конспект и презентация урока 10 класс "Касательная к графику функции""
    ["seo_title"] => string(66) "konspiektipriezientatsiiauroka10klasskasatielnaiakghrafikufunktsii"
    ["file_id"] => string(6) "259306"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1448714575"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1580 руб.
2640 руб.
1440 руб.
2400 руб.
1410 руб.
2350 руб.
1500 руб.
2500 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства