kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Геометрические задачи на вычисление

Нажмите, чтобы узнать подробности

Материал для учащихся девятых классов. Представлены задачи по геометрии на вычисление. Задания помогут учащимся при подготовке к ОГЭ. Примеры задач на нахождение медианы прямоугольного теругольника, вычисления радиуса окружности, задачи на вычисление отрезков в трапеции, вычисление угла между высотой и биссектрисой в прямоугольном треугольнике, вычисление площадей прямоугольника, трапеции.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Геометрические задачи на вычисление »

Геометрические задачи на вычисление.

1. В пря­мо­уголь­ном тре­уголь­ни­ке  с пря­мым углом  из­вест­ны ка­те­ты:

. Най­ди­те ме­ди­а­ну  этого тре­уголь­ни­ка.

Ре­ше­ние.

 

Ме­ди­а­на, про­ве­ден­ная к ги­по­те­ну­зе, равна её по­лов­ние:

 

 

Ответ: 5.



2. Най­ди­те угол АСО, если его сто­ро­на СА ка­са­ет­ся окруж­но­сти, О — центр окруж­но­сти, а дуга AD окруж­но­сти, за­ключённая внут­ри этого угла, равна 100°.

Ре­ше­ние.

Про­ведём ра­ди­ус OA. Тре­уголь­ник AOC — пря­мо­уголь­ный, ∠A = 90°. ∠COA = 180° − ∠AOD = 180° − 100° = 80°; ∠ACO = 90° − 80° = 10°.

Ответ: 10.



3. Из точки А про­ве­де­ны две ка­са­тель­ные к окруж­но­сти с цен­тром в точке О. Най­ди­те ра­ди­ус окруж­но­сти, если угол между ка­са­тель­ны­ми равен 60°, а рас­сто­я­ние от точки А до точки О равно 8.

Ре­ше­ние.

Опу­стим ра­ди­у­сы на каж­дую ка­са­тель­ную. Со­еди­ним точки A и O. По­лу­чив­ши­е­ся тре­уголь­ни­ки - пря­мо­уголь­ные, так как ра­ди­ус, про­ве­ден­ный в точку ка­са­ния, пер­пен­ди­ку­ля­рен ка­са­тель­ной. По ги­по­те­ну­зе и ка­те­ту эти тре­уголь­ни­ки равны, таким об­ра­зом, мы по­лу­чи­ли, что угол, ле­жа­щий на­про­тив ка­те­та равен  Катет, ле­жа­щий на­про­тив угла в равен по­ло­ви­не ги­по­те­ну­зы, тогда ра­ди­ус равен 4.

Ответ: 4.



4. В тра­пе­ции АВСD бо­ко­вые сто­ро­ны AB и CD равны, CH — вы­со­та, про­ведённая к боль­ше­му ос­но­ва­нию AD. Най­ди­те длину от­рез­ка HD, если сред­няя линия KM тра­пе­ции равна 16, а мень­шее ос­но­ва­ние BC равно 4.

Ре­ше­ние.

Так как AB = CD, то тра­пе­ция яв­ля­ет­ся рав­но­бед­рен­ной. Опу­стим пер­пен­ди­ку­ляр BL из точки B на боль­шее ос­но­ва­ние AD. Пря­мо­уголь­ные тре­уголь­ни­ки ABL и CHD равны по ги­по­те­ну­зе и при­ле­жа­ще­му остро­му углу, по­это­муAL = HD. Сред­няя линия равна по­лу­сум­ме ос­но­ва­ний:

 

Так как от­рез­ки AL=HD, то , зна­чит, 

 

Ответ: HD = 12.



5. В тре­уголь­ни­ке АВС углы А и С равны 20° и 60° со­от­вет­ствен­но. Най­ди­те угол между вы­со­той ВН и бис­сек­три­сой BD.

Ре­ше­ние.

Най­дем 

 

 

Так как BD - бис­сек­три­са, то 

Тре­уголь­ник HBC- пря­мо­уголь­ный. Так как  то 

 

Таким об­ра­зом, ис­ко­мый угол DBH равен 

Ответ: 



6. Пря­мая AD, пер­пен­ди­ку­ляр­ная ме­ди­а­не ВМ тре­уголь­ни­ка АВС, делит её по­по­лам. Най­ди­те сто­ро­ну АС, если сто­ро­на АВ равна 4.

Ре­ше­ние.

Так как вы­со­та AD, про­ве­ден­ная к ме­ди­а­не BM делит ее по­по­лам, то тре­уголь­ник ABM яв­ля­ет­ся рав­но­бед­рен­ным, по­это­му AB=AM=4. Так как BM- ме­ди­а­на, то AM=MC, таким об­ра­зом, AC=2AM=8.

Ответ: AC=8.



7. На сто­ро­нах угла , рав­но­го 20°, и на его бис­сек­три­се от­ло­же­ны рав­ные от­рез­ки  и . Опре­де­ли­те ве­ли­чи­ну угла .

Ре­ше­ние.

Так как от­рез­ки равны, то тре­уголь­ни­ки ACD и ABD - рав­но­бед­рен­ные. Углы при ос­но­ва­нии этих тре­уголь­ни­ков равны:

 

Най­дем ис­ко­мый угол:

 

 

Ответ: 



8. Най­ди­те ве­ли­чи­ну угла  , если   — бис­сек­три­са угла  ,   — бис­сек­три­са угла  .

Ре­ше­ние.

Имеем:   = 2 · 25° = 50°;   = 180° − 50° = 130°;   = 130° : 2 = 65°.


Ответ: 65°.



9. Ос­но­ва­ние рав­но­бед­рен­ной тра­пе­ции равны 8 и 18, а её пе­ри­метр равен 52. Най­ди­те пло­щадь тра­пе­ции.

Ре­ше­ние.

Рас­смот­рим рав­но­бед­рен­ную тра­пе­цию    с ос­но­ва­ни­я­ми    и  , пе­ри­метр ко­то­рой равен 52. Имеем

.

 

Пусть  — вы­со­та тра­пе­ции. Тогда . Из пря­мо­уголь­но­го тре­уголь­ни­ка  на­хо­дим . Зна­чит, пло­щадь тра­пе­ции равна .



Ответ: 156.



10. Пе­ри­метр пря­мо­уголь­ни­ка равен 56, а диа­го­наль равна 27. Най­ди­те пло­щадь это пря­мо­уголь­ни­ка.

Ре­ше­ние.

Пусть одна из сто­рон пря­мо­уголь­ни­ка равна  . Тогда дру­гая сто­ро­на равна  , а пло­щадь  . По тео­ре­ме Пи­фа­го­ра:

 

 

 


Зна­чит, ис­ко­мая пло­щадь равна 27,5.


Ответ: 27,5.




Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 9 класс

Скачать
Геометрические задачи на вычисление

Автор: Хакимзянова Нурания Идерисовна

Дата: 06.11.2014

Номер свидетельства: 127420

Похожие файлы

object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(193) "Пути и способы осуществления дифференциации обучения при формировании обобщенного приема решения задач"
    ["seo_title"] => string(126) "puti-i-sposoby-osushchiestvlieniia-diffierientsiatsii-obuchieniia-pri-formirovanii-obobshchiennogho-priiema-rieshieniia-zadach"
    ["file_id"] => string(6) "314650"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1459751208"
  }
}
object(ArrayObject)#876 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(161) "конспект урока на тему "Решение задач на применение признаков равенства треугольников" "
    ["seo_title"] => string(97) "konspiekt-uroka-na-tiemu-rieshieniie-zadach-na-primienieniie-priznakov-ravienstva-trieughol-nikov"
    ["file_id"] => string(6) "167717"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1423132835"
  }
}
object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(178) "Роль компетентностно-ориентированных задач в формировании математической грамотности учащихся"
    ["seo_title"] => string(80) "rol_kompietientnostno_oriientirovannykh_zadach_v_formirovanii_matiematichieskoi_"
    ["file_id"] => string(6) "420280"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1496495945"
  }
}
object(ArrayObject)#876 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(137) "Применение задач с профессиональной направленностью на уроках математики"
    ["seo_title"] => string(81) "primienieniie-zadach-s-profiessional-noi-napravliennost-iu-na-urokakh-matiematiki"
    ["file_id"] => string(6) "283997"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1453909123"
  }
}
object(ArrayObject)#854 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(86) "Урок математики на тему "Решение задач", 2 класс "
    ["seo_title"] => string(52) "urok-matiematiki-na-tiemu-rieshieniie-zadach-2-klass"
    ["file_id"] => string(6) "233829"
    ["category_seo"] => string(16) "nachalniyeKlassi"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1443243808"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1360 руб.
2260 руб.
1600 руб.
2660 руб.
1240 руб.
2070 руб.
1500 руб.
2500 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства