kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Интегрирование по частям и методом замены переменной

Нажмите, чтобы узнать подробности

Цели:

  •  научиться применять метод замены переменной при вычислении неопределенного интеграла

Оснащение занятия:   конспект лекций.

Критерии оценок

оценка «5» ставится за  верное выполнение всех заданий   работы

оценка «4» ставится за  выполнение задания 1 и верное решение  любых восьми  примеров из задания 2. 

оценка «3» ставится за  выполнение задания 1 и верное решение  любых шести примеров из задания 2. 

Порядок выполнения работы

Задание 1.

- Ознакомиться с лекциями № 10 и № 11

 -  Выписать тетрадь примеры на применение метода замены переменной и метода интегрирования по частям при вычислении неопределенного интеграла

Задание 2.

Решить примеры для самостоятельного решения

Лекция 10.

Тема «Неопределенный интеграл. Метод замены переменной»

В основе интегрирования методом замены переменной лежит свойство инвариантности формул интегрирования, которое заключается в следующем: если,

то                                           ,

где u(x) – произвольная дифференцируемая функция от х.

         Замена переменной в неопределенном интеграле производится с помощью подстановок следующих двух типов:

1) х =  (t), где t – новая переменная, а  (t) – непрерывно дифференцируемая функция.  В этом случае формула замены переменной такова:

(1)

Функцию (t) стараются выбирать таким образом, чтобы правая часть формулы (1)  приобрела более удобный для интегрирования вид;

2) t = (x), где t – новая переменная. В этом случае формула замены переменной имеет вид: 

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Интегрирование по частям и методом замены переменной»

ПрактическАЯ РАБОТА№ 8

Тема: Техника интегрирования. Интегрирование методом замены переменной. Интегрирование по частям.

Цели:

  • научиться применять метод замены переменной при вычислении неопределенного интеграла

Оснащение занятия: конспект лекций.

Критерии оценок

оценка «5» ставится за верное выполнение всех заданий работы

оценка «4» ставится за выполнение задания 1 и верное решение любых восьми примеров из задания 2.

оценка «3» ставится за выполнение задания 1 и верное решение любых шести примеров из задания 2.

Порядок выполнения работы

Задание 1.

- Ознакомиться с лекциями № 10 и № 11

- Выписать тетрадь примеры на применение метода замены переменной и метода интегрирования по частям при вычислении неопределенного интеграла

Задание 2.

Решить примеры для самостоятельного решения

Лекция 10.

Тема «Неопределенный интеграл. Метод замены переменной»

В основе интегрирования методом замены переменной лежит свойство инвариантности формул интегрирования, которое заключается в следующем: если,

то ,

где u(x) – произвольная дифференцируемая функция от х.

Замена переменной в неопределенном интеграле производится с помощью подстановок следующих двух типов:

1) х = (t), где t – новая переменная, а (t) – непрерывно дифференцируемая функция. В этом случае формула замены переменной такова:

(1)

Функцию (t) стараются выбирать таким образом, чтобы правая часть формулы (1) приобрела более удобный для интегрирования вид;

2) t = (x), где t – новая переменная. В этом случае формула замены переменной имеет вид:

Примеры.

1.

Решение. Данный интеграл окажется табличным, если под знаком дифференциала будет находиться аргумент 3х подынтегральной функции . Так как d(3x) = 3dx, то

=

Следовательно, подстановка 3х = t приводит рассматриваемый интеграл к табличному: = = = -cost + C

Возвращаясь к старой переменной х, окончательно получим

= -cos3х + C

2.

Решение. Так как d() = 3х2dx, то

Полагая = t, получим

+ C = + C.

3.

Решение. Поскольку d(sinx) = cosx, имеем

Поэтому, используя подстановку t = , приходим к табличному интегралу:

= = =

4.

Из соотношения d( получаем

=

Воспользовавшись подстановкой t = , приходим к табличному интегралу:

= = arcsin

5.

Решение. Здесь используем подстановку . Отсюда х = t3, dx = 3t2dt и, следовательно по формуле (1) находим

= = 3sin t + C

Возвращаясь к старой переменной х, получим

= 3sin + C

6.

Применим подстановку x = . Тогда dx = - , = , t =

По формуле (1) находим

= - = - = - ln + C

Возвращаясь к старой переменной х, получим

- ln + C = - ln + C = -ln + x

Примеры для самостоятельного решения

Вычислите интегралы, используя метод замены переменной:

1.

2.

3.

4.

5.

6.



Лекция 11.

Тема «Неопределенный интеграл. Интегрирование по частям».

Интегрированием по частям называется нахождение интеграла по формуле (1)

где и - непрерывно дифференцируемые функции от х. С помощью формулы (1) отыскание интеграласводится к нахождению другого интеграла, её применение целесообразно в тех случаях, когда последний интеграл либо проще исходного, либо ему подобен.

При этом в качестве берется функция, которая при дифференцировании упрощается, а в качестве - та часть подынтегрального выражения, интеграл от которой известен или может быть найден.

Так при нахождении интегралов вида

за следует принять многочлен, а за - соответственно выражения, ; при отыскании интегралов вида

за принимаются соответственно функции , а за - выражение .

Примеры.

1.

. Положим = lnx, = , откуда

du = , v =

Тогда по формуле (1) находим

= lnx( = - + = - - + С

2.

Решение. Полагая = = найдем du =,

v = =

Следовательно,

= =

3.

Решение. Пусть = , = du =, v =

По формуле (1) находим

= - (

К последнему интегралу снова применим формулу интегрирования по частям.

Положим =, = du =, v = и, следовательно, - =

Подставляя найденное выражение в соотношение (, получим

= (



4.

Положим = = , откуда du = , v =

Используя формулу (1), находим

=

= - х +

5.

Решение. Пусть = ; тогда du = - v = -

Согласно формуле (1) имеем

I = = = - . (

К последнему интегралу снова применяем интегрирование по частям. Полагая = , находим du = - v = и, следовательно, =

Подставляя полученное выражение в соотношение (приходим к уравнению с неизвестным интегралом I:

I = = - - – I,

Из которого находим

I = - (

Примеры для самостоятельного решения

Вычислите интегралы, используя метод интегрирования по частям:

1.

2.

3.

4.

5.

Контроль знаний обучающихся:

  • проверить практическую работу;

Требования к оформлению практической работы:

Задание должно быть выполнено в тетради для практических работ

Работу сдать после занятия



Получите в подарок сайт учителя

Предмет: Математика

Категория: Прочее

Целевая аудитория: 11 класс

Скачать
Интегрирование по частям и методом замены переменной

Автор: Трушникова Галина Петровна

Дата: 09.04.2017

Номер свидетельства: 407948

Похожие файлы

object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(132) "Практическая работа по теме Методы вычисления определенного интеграла "
    ["seo_title"] => string(84) "praktichieskaia-rabota-po-tiemie-mietody-vychislieniia-opriedieliennogho-intieghrala"
    ["file_id"] => string(6) "110548"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1406189689"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(106) "Метод замены переменной и метод интегрирования по частям."
    ["seo_title"] => string(59) "metod_zameny_peremennoi_i_metod_integrirovaniia_po_chastiam"
    ["file_id"] => string(6) "589918"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1635434622"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(61) "Решение задач программированияя "
    ["seo_title"] => string(39) "rieshieniie-zadach-proghrammirovaniiaia"
    ["file_id"] => string(6) "153010"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1420956922"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(229) "Социально-педагогическое значение, сущность, функции нестандартных форм урока как проблема психолого-педагогической науки "
    ["seo_title"] => string(142) "sotsial-no-piedaghoghichieskoie-znachieniie-sushchnost-funktsii-niestandartnykh-form-uroka-kak-probliema-psikhologho-piedaghoghichieskoi-nauki"
    ["file_id"] => string(6) "245531"
    ["category_seo"] => string(16) "nachalniyeKlassi"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1446138677"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1410 руб.
2350 руб.
1440 руб.
2400 руб.
1120 руб.
1870 руб.
1500 руб.
2500 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства