kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Проект " Симметрия вокруг нас"

Нажмите, чтобы узнать подробности

Данная работа относится к долгосрочным проектам. В работе рассмотрены вопросы: история возникновения симметрии, симметрия в архитектуре Санкт-Петербурга, симметрия в природе, в животном мире, в литературе, в кристаллах, биологии, химии и вокруг нас. Учащиеся распределили вопросы по подгруппам и исследовали свой вопрос в определенной сфере деятельности, подкрепляя исследования фактами, фотографиями, работали с учителями-предметниками: биологии, химии, литературы, искусства, использовали материалы из интернет-ресурсов. Каждый вопрос был рассмотрен и защищен отдельно, затем собрали всё в один проект и выступили с ним на конкурсе проектов в исследовательской конференции среди учащихся школ города и района.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Проект " Симметрия вокруг нас" »

С имметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство. Немецкий математик Г.Вейль В этом проекте Вы увидете: Понятие и историю возникновения симметрии Основные виды симметрии Симметричные фигуры Симметрию в быту, архитектуре, природе, религии, геометрии и др. Проект подготовили ученики 8в класса лицея №359: Аббасов Али, Захарова Катя и Кобычев Александр. Учитель математики: Налётова Светлана Владимировна

С имметрия является той идеей,

посредством которой человек на

протяжении веков пытался постичь и

создать порядок, красоту и совершенство.

Немецкий математик

Г.Вейль

В этом проекте Вы увидете:

  • Понятие и историю возникновения симметрии
  • Основные виды симметрии
  • Симметричные фигуры
  • Симметрию в быту, архитектуре, природе, религии, геометрии и др.

Проект подготовили ученики 8в класса

лицея №359: Аббасов Али, Захарова Катя

и Кобычев Александр.

Учитель математики: Налётова

Светлана Владимировна

Симметрия (означает «соразмерность» ) — свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под симметрией понимают всякую правильность во внутреннем строении тела или фигуры.

Симметрия (означает «соразмерность» ) — свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под симметрией понимают всякую правильность во внутреннем строении тела или фигуры.

Впервые понятие симметрия появляется в VI веке до нашей эры в первой научной школе в истории человечества, у последователей Пифагора Самосского , пытавшихся связать симметрию с числом.  Каждой вещи, учили пифагорейцы, соответствует определенное отношение чисел, которое они называли логосом . Пифагорейцы предпочитали вместо слова «симметрии» пользоваться словом «гармония» .

Впервые понятие симметрия появляется в VI веке до нашей эры в

первой научной школе в истории человечества, у последователей

Пифагора Самосского , пытавшихся связать симметрию с числом.

Каждой вещи, учили пифагорейцы, соответствует определенное

отношение чисел, которое они называли логосом . Пифагорейцы

предпочитали вместо слова «симметрии» пользоваться словом

«гармония» .

1 3 5 4 2 Ученые древности, изучающие симметрию, любили обращаться к правильным многогранникам (грани у которых правильные многоугольники одного вида, а углы между гранями равны ). Древние греки установили, что существует всего пять правильных выпуклых многогранников - тетраэдр (1), октаэдр (2), икосаэдр (3), куб (4), додекаэдр (5) . Все правильные многогранники обладают зеркальной симметрией .

1

3

5

4

2

Ученые древности, изучающие симметрию, любили

обращаться к правильным многогранникам (грани у

которых правильные многоугольники одного вида, а углы

между гранями равны ). Древние греки установили, что

существует всего пять правильных выпуклых

многогранников - тетраэдр (1), октаэдр (2), икосаэдр (3),

куб (4), додекаэдр (5) . Все правильные многогранники

обладают зеркальной симметрией .

Осевая симметрия - это симметрия относительно прямой. Фигура  называется симметричной относительно прямой а , если для  каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. В данном случае прямая - ось  симметрии.  Две точки А и А1 называются симметричными относительно прямой а , если эта прямая проходит через середину отрезка АА1 и  перпендикулярна к нему. Каждая точка прямой а считается  симметричной самой себе.   A a A 1

Осевая симметрия - это симметрия относительно прямой. Фигура называется симметричной относительно прямой а , если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. В данном случае прямая - ось симметрии. Две точки А и А1 называются симметричными относительно прямой а , если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему. Каждая точка прямой а считается симметричной самой себе.

A

a

A 1

Осевая симметрия есть у:  - треугольника  - прямоугольника  - ромба  - квадрата  - круга

Осевая симметрия есть у: - треугольника - прямоугольника - ромба - квадрата - круга

О A 1 A Центральная симметрия - симметрия относительно точки. Фигура называется симметричной относительно точки О , если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. В этом случае точка является центром симметрии фигуры.  Две точки А и А1 называются симметричными относительно точки О, если точка О - середина отрезка АА1 и перпендикулярна к нему. Точка О считается симметричной самой себе.

О

A 1

A

Центральная симметрия - симметрия относительно точки. Фигура

называется симметричной относительно точки О , если для каждой

точки фигуры симметричная ей точка относительно точки О также

принадлежит этой фигуре. В этом случае точка является центром

симметрии фигуры.

Две точки А и А1 называются симметричными относительно точки О, если точка О - середина отрезка АА1 и перпендикулярна к нему.

Точка О считается симметричной самой себе.

Центральная симметрия есть у: - круга - параллелограмма

Центральная симметрия есть у:

- круга

- параллелограмма

Билатера́льная симметрия (двусторонняя симметрия) — симметрия зеркального отражения, при которой объект имеет одну плоскость симметрии, относительно которой две его половины зеркально симметричны. Если на плоскость симметрии опустить перпендикуляр из точки A и затем из точки О на плоскости симметрии продолжить его на длину AО, то он попадёт в точку A1, во всём подобную точке A. А О А1

Билатера́льная симметрия (двусторонняя симметрия) — симметрия зеркального отражения, при которой объект имеет одну плоскость

симметрии, относительно которой две его половины зеркально

симметричны. Если на плоскость симметрии опустить

перпендикуляр из точки A и затем из точки О на плоскости

симметрии продолжить его на длину AО, то он попадёт в точку A1, во всём подобную точке A.

А

О

А1

Ось симметрии у билатерально симметричных объектов отсутствует. У животных билатеральная симметрия проявляется в схожести или почти полной идентичности левой и правой половин тела. При этом всегда существуют случайные отклонения от симметрии (например, расположение родинок или отклонения в расположении внутренних органов).

Ось симметрии у билатерально симметричных объектов отсутствует. У животных билатеральная симметрия проявляется в схожести или

почти полной идентичности левой и правой половин тела. При этом всегда существуют случайные отклонения от симметрии (например, расположение родинок или отклонения в расположении внутренних органов).

Радиальная симметрия — форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг определённой прямой . Центром симметрии объекта называют прямую, на которой пересекаются все оси двусторонней симметрии. Радиальной симметрией обладают такие геометрические объекты, как круг, шар, цилиндр или конус.

Радиальная симметрия — форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг

определённой прямой . Центром симметрии объекта называют

прямую, на которой пересекаются все оси двусторонней симметрии. Радиальной симметрией обладают такие геометрические объекты, как круг, шар, цилиндр или конус.

Не только истинный поэт, но и истинный математик одинаково озабочены отбором слов и фраз для более точного выражения мысли. А.Блок Замечательным примером зеркальной симметрии в литературе являются слова фразы

Не только истинный поэт, но и истинный математик

одинаково озабочены отбором слов и фраз для более

точного выражения мысли.

А.Блок

Замечательным примером зеркальной симметрии в литературе

являются слова фразы " перевертыши ":

  • Шалаш, казак, дед, потоп .
  • " А роза упала на лапу Азора ". В этом "перевертыше" центром

зеркальной симметрии является буква " н ", относительно которой

все остальные буквы (не учитывая пропуски между словами)

расположены во взаимно противоположной очередности.

  • " Кинь лед зебре, бобер бездельник ." В этом "перевертыше"

центром зеркальной симметрии является буква " о ".

  • " А луна канула " Центр зеркальной симметрии - буква " к ".

Такие "перевертыши" в литературе называют палиндромами .

Зеркальную симметрию равнобедренного треугольника мы находим в стихотворении Валерия Брюсова “Треугольник ” . Я, Еле Качая веревки, в синели не различая синих тонов и милой головки, летаю в просторе, крылатый как птица, меж липовых кустов! но в заманчивом взоре знаю, блещет, алея, зарница! и я счастлив ею без слов!

Зеркальную симметрию равнобедренного треугольника мы находим в

стихотворении Валерия Брюсова “Треугольник ” .

Я,

Еле

Качая

веревки,

в синели

не различая

синих тонов

и милой головки,

летаю в просторе,

крылатый как птица,

меж липовых кустов!

но в заманчивом взоре

знаю, блещет, алея, зарница!

и я счастлив ею без слов!

Чередование рифм и чтение по интонации дает чувствовать прелесть (симметрии) пушкинского стихотворения . А.С. Пушкин. В этот год осенняя погода Стояла долго на дворе Зимы ждала, ждала природа Снег выпал только в январе.

Чередование рифм и чтение по интонации дает чувствовать прелесть

(симметрии) пушкинского стихотворения .

А.С. Пушкин.

В этот год осенняя погода

Стояла долго на дворе

Зимы ждала, ждала природа

Снег выпал только в январе.

Произведение А. Н.Воронихина  Казанский собор в Санкт-Петербурге

Произведение А. Н.Воронихина Казанский собор в Санкт-Петербурге

Большой дворец в Петергофе

Большой дворец в Петергофе

Смольный собор

Смольный собор

Адмиралтейство

Адмиралтейство

Аничков     мост

Аничков мост

Зимний дворец в Санкт-Петербурге Фотография Захаровой Кати

Зимний дворец в Санкт-Петербурге

Фотография Захаровой Кати

Фонарь на улице Итальянской города Санкт-Петербурга Фотография Аббасова Али Храм Спаса-на-крови в Санкт-Петербурге Фотография Кобычева Саши

Фонарь на улице Итальянской

города Санкт-Петербурга

Фотография Аббасова Али

Храм Спаса-на-крови в Санкт-Петербурге

Фотография Кобычева Саши

Потолоки Эрмитажа

Потолоки Эрмитажа

Пример симметрии у кошки Фотография Захаровой Кати

Пример симметрии у кошки

Фотография Захаровой Кати

Фотография Аббасова Али

Фотография Аббасова Али

Склонность людей видеть цель в симметрии, является одной из причин, почему симметрия часто является неотъемлемой частью символов мировых религий. До сих пор симметрия подчиняется правилу: она посылает сигналы «мы одинаковые», а асимметрия выражает мысль «я особый, лучше чем ты». Взаимоотношения со сверстниками строятся на основе симметрии, а властные отношения — на асимметрии.

Склонность людей видеть цель в симметрии, является одной из

причин, почему симметрия часто является неотъемлемой частью

символов мировых религий. До сих пор симметрия подчиняется

правилу: она посылает сигналы «мы одинаковые», а асимметрия

выражает мысль «я особый, лучше чем ты». Взаимоотношения со

сверстниками строятся на основе симметрии, а властные

отношения — на асимметрии.

Вывод

В процессе изучения нами симметрии мы узнали много нового о мире, в котором мы живем. Мы увидели симметрию в таких простых вещах, как в обычном мяче, конфете, фонарном столбе и вообще практически везде!

Также мы увидели симметрию в животных и цветах, стихотворениях и в прозе, в молекулах и в атомах, в архитектуре и живописи, и даже в самом человеке.

На уроках геометрии отводится очень мало времени для изучения симметрии, но благодаря этому проекту мы буквально прониклись в эту тему. Нам помогали наши одноклассники, родители и наши любимые учителя. Без них бы у нас не получилось такого многообразного проекта.

Симметрия противостоит хаосу, беспорядку. Она присутствует

в нашей жизни буквально во всём, но мы настолько к ней привыкли,

что не замечаем этого. Но как бы мы к ней не относились, она есть в

нашей жизни, добавляя в неё мир, спокойствие и состояние чего-то не

чуждого глазу. Это доказали наши исследования. Мы считаем, что

элементы симметрии всегда будет вокруг нас.

 

Мы будем с удовольствием продолжать заниматься нашим проектом, изучать симметрию еще глубже.


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 8 класс.
Урок соответствует ФГОС

Скачать
Проект " Симметрия вокруг нас"

Автор: Налётова Светлана Владимировна

Дата: 11.06.2015

Номер свидетельства: 219229

Похожие файлы

object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(63) "Мини проект "Симметрия вокруг нас" "
    ["seo_title"] => string(36) "mini-proiekt-simmietriia-vokrugh-nas"
    ["file_id"] => string(6) "123558"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1414514908"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(88) "Открытый урок - практикум "Симметрия вокруг нас" "
    ["seo_title"] => string(47) "otkrytyi-urok-praktikum-simmietriia-vokrugh-nas"
    ["file_id"] => string(6) "109380"
    ["category_seo"] => string(16) "nachalniyeKlassi"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1404456046"
  }
}
object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(111) "Проект " Математика вокруг нас.  Узоры и орнаменты на посуде". "
    ["seo_title"] => string(61) "proiekt-matiematika-vokrugh-nas-uzory-i-ornamienty-na-posudie"
    ["file_id"] => string(6) "130155"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1415824225"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(79) "Коллективный проект "Симметрия вокруг нас" "
    ["seo_title"] => string(45) "kolliektivnyi-proiekt-simmietriia-vokrugh-nas"
    ["file_id"] => string(6) "152153"
    ["category_seo"] => string(16) "nachalniyeKlassi"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1420811345"
  }
}
object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(70) "Учебный проект  "Симметрия вокруг нас" "
    ["seo_title"] => string(41) "uchiebnyi-proiekt-simmietriia-vokrugh-nas"
    ["file_id"] => string(6) "130644"
    ["category_seo"] => string(10) "vneurochka"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1415963440"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1580 руб.
2640 руб.
1360 руб.
2260 руб.
1190 руб.
1980 руб.
1160 руб.
1940 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства