kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Дидактическая игра-конкурс"Своя игра"

Нажмите, чтобы узнать подробности

Тип урока: игра-конкурс по программному материалу алгебры  в 10 классе и нестандартным арифметическим задачам на смекалку

Формы работы: командная, фронтальная.

Аннотация: количество участников в команде 4-5. Наиболее оптимально ограничение первого тура 20-25 минутами, третьего тура – не больше чем 10-15 минутами. 5-10 минут выделить на разъяснение цели мероприятия, правил игры, объявление результатов игры и награждение победителей. Таким образом, общее время игры может быть ограничено стандартным уроком в 45 минут. Особую «изюминку» в проводимое мероприятие привносит второй тур, содержащий арифметические задачи из задачника издания 1962 года. 

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«дидактическая игра-конкурс"Своя игра" »

Тема урока: Дидактическая игра-конкурс «Своя игра»

Предмет: Математика, внеурочная работа по математике

Класс: 10Автор: учитель математики и физики Орешкина Лариса Васильевна

МКОУ « Советская СОШ» п.Комсомольский ,Волгоградская область


Ключевые слова: математика, алгебра, старые задачи, старая школа, задачи для 6 класса по арифметике, «Своя игра», декада математики, неделя математики, открытый урок, презентация для внеурочного мероприятия по математике, командные мероприятия для классов одной параллели, дидактическая игра для 10 классов, задания в программе Microsoft Office PowerPoint.

Оборудование: класс, оборудованный медиапроектором и (или) интерактивной доской, программа Microsoft Office PowerPoint, задания к игре в электронном виде (см. приложение).

Тип урока: игра-конкурс по программному материалу алгебры в 10 классе и нестандартным арифметическим задачам на смекалку

Формы работы: командная, фронтальная.

Аннотация: количество участников в команде 4-5. Наиболее оптимально ограничение первого тура 20-25 минутами, третьего тура – не больше чем 10-15 минутами. 5-10 минут выделить на разъяснение цели мероприятия, правил игры, объявление результатов игры и награждение победителей. Таким образом, общее время игры может быть ограничено стандартным уроком в 45 минут. Особую «изюминку» в проводимое мероприятие привносит второй тур, содержащий арифметические задачи из задачника издания 1962 года.

Цель урока: Провести соревновательное командное мероприятие, позволяющее принять в нем участие наиболее большему количеству учащихся всей параллели, в занимательной форме проверяющее знания по предмету «Математика».

Задачи:

  1. Формирование навыков коллективной работы;

  2. Демонстрация возможностей мультимедиа проектора и интерактивной доски при проведении командных мероприятий;

  3. Развитие внимания и логического мышления;

  4. Развитие интереса к изучению математики и информатики на примере офисного приложения PowerPoint.

Ход урока:

Выбранная форма дидактического конкурса наиболее удобна для проведения коллективных мероприятий, в которых могут принять участие учащиеся всей параллели 10 классов школы. Поэтому наиболее подходит при проведении недель и декад математики. При небольшом количестве классов на параллели возможно участие нескольких команд по 5 человек от каждого класса. В случае большого количества классов каждый класс может выставить одну команду или конкурс осуществляется в несколько потоков, причем победитель определяется по количеству набранных баллов.

Динамичная форма игры позволяет принять участие болельщикам из числа не вошедших в команды учеников. В случае, когда ни одна из команд не дает правильного ответа, вопрос может быть адресован к болельщикам. В случае правильного ответа от болельщиков балл может быть прибавлен к общей сумме выбранной ответившим болельщиком команды.

Игра осуществляется в два тура: «Алгебра», «Математическая смекалка». Первый вопрос выбирается ведущим – учителем, проводящим мероприятие. Обычно это первый вопрос в первой теме – «Уравнения за 100». Ведущий зачитывает вопрос, и команды получают возможность совещаться и записывать решение. Условием набора баллов за верное решение является первенство в объявлении ответа. Поэтому каждая команда стремится первой ответить на вопрос. В случае правильного ответа баллы прибавляются, в случае не правильного – вычитаются. В дальнейшем тему и номинал выбирает команда, ответившая на вопрос или попытавшаяся ответить первой. В перерыве между турами жюри подсчитывает набранное каждой командой количество баллов и объявляет командам перед началом очередного тура.

Ячейки таблицы с номиналами и темами анимированы и интерактивны. Щелчок мыши или удар указкой по соответствующему месту интерактивной доски переводит слайд к выбранному вопросу. С каждого слайда-вопроса можно по стрелке-указателю вернуться на главный слайд − таблицу. Ячейки, содержащие уже сыгравший вопрос, меняют цвет. Поэтому не может быть ситуации повтора вопросов. После выбора вопроса слайд будет неизменен до следующего щелчка мыши. По повторному щелчку открывается верный ответ и указатель-стрелка для перехода к таблице вопросов.

В случае завершения активных ссылок на вопросы в таблице или истечения времени (в случае, когда время на каждый тур будет ограничено по согласованию с командами) со слайда с вопросами по стрелке бирюзового цвета может быть осуществлен переход к завершающему тур слайду и открывающему тур следующий.

К теме «Функция» прилагаются слайды с чертежами. С этих слайдов по стрелке осуществляется переход к слайду с вопросом. Щелчок мышью открывает верный ответ.
На заглавном слайде указаны границы используемого материала по алгебре – 7-10 класс, но это, разумеется, не означает, что задания посильны учащимся всего периода с 7 по 10 класс. Используется широкий спектр тем: от линейных функций до тригонометрических, от линейных уравнений до уравнений с модулем, радикалами и тригонометрическими функциями. Аналогичный широкий выбор тем отражен и в других номинациях. Таким образом, часть вопросов предназначена для повторения и активизации остаточных знаний.

Второй тур мероприятия состоит из задач, предлагаемых к решению шестиклассникам в 1962 и десятком лет раньше. Это задачник Пономарёва С.А. и Сырнева Н.И. «Сборник задач и упражнений по арифметике для V-VI классов». Издание девятое, «Учпедгиз», Москва, 1962 год. Объективное, связанное с различными причинами снижение качества подготовки учащихся в плане арифметического решения задач делает задачи для 10-классников достаточно сложными, потому как приходится применять математические операции и умозаключения, не популярные в нынешних программах. Однако, значение гимнастики для ума, обусловленное необходимостью решать такие задачи без применения алгебраического аппарата, трудно переоценить. В некоторых случаях применение последнего делает решение неоправданно усложненным и с большими трудностями осуществляемым в заданные ограниченные сроки.
Поэтому беру на себя смелость предложить арифметическое решение предложенных во втором туре задач.
Задача 1. Магазин получил  со склада   материал. Ситца  было получено 66% общего количества, а числа метров сатина и шерсти относились  между  собой,   как  11 : 6.   

Сатина было получено   на 450 м больше шерсти. Сколько метров каждого материала получил  магазин?
Решение:
Количество сатина и шерсти составило 34% от общего количества полученного материала. Отношение 11:6 означает, что весь материал можно представить 17-ю частями. 11 из которых соответствуют количеству сатина, а 6 – количеству шерсти. Тогда процентное содержание разделится в том же отношении: 34%/17*11=22% - сатин, 34%/17*6=12% - шерсть. Значит, 10% разницы и составят 450 метров, 100% - 4500 метров, 66% - 2970 метров, 22% - 990 метров, 12% - 540 метров.

Задача 2. Имеются два числа, ни одно из которых не делится на 7. Может ли (и при каком условии) сумма этих чисел разделиться на 7?

Решение: В данном случае решение очевидно для учащихся, знакомых с теорией остатков и (или) со здравым смыслом.

Задача 3. Из двух кусков сплавов, из которых первый весил 12 кг и содержал 70% чистого серебра, а второй содержал 56% чистого серебра, получился сплав, содержащий 60% чистого серебра. Найти вес второго куска сплава.

Решение: Содержание серебра в первом сплаве составляет 8,4 кг, во втором – 0,56 от веса второго сплава. Если вес второго сплава принять за x кг, то вес серебра составит 0,56х кг. Общий вес двух сплавов – 12+х кг. Общий вес серебра в двух сплавах – (8,4+0,56х) кг. Составим отношение общего веса серебра к общему весу сплавов.
(8,4+0,56х)/(х+12). По условию, оно равно 0,6. Решение данного уравнения даст требуемый ответ – 30 кг.
Задача 4. Сколько процентов от вычитаемого составляет разность, если  вычитаемое составляет 2/3 уменьшаемого?

Решение: Так как сумма вычитаемого и разности дает уменьшаемое, а вычитаемое составляет по условию 2/3 уменьшаемого, то разность составляет 1/3 вычитаемого. 1/3 составляет от 2/3 ровно половину, то есть 50%.

Задача 5. Мальчик накопил на покупку фотоаппарата 5,2 руб. Остальные деньги ему дали отец и два старших брата. Оказалось, что первый брат дал 25% суммы, собранной на покупку без него, второй  брат  дал  33 1/3% суммы, собранной на покупку без него, и отец дал 50% суммы, собранной на покупку без него. Сколько  рублей заплатил мальчик за фотоаппарат?

Решение: Данная задача оценена в 1000 баллов. Она несколько сложнее прочих в виду достаточно запутанной формулировки «без него». Разумеется, учитель может оценить её на своё усмотрение меньшим количеством баллов, приравняв к остальным по сложности.
Очевидно, что 25% - четверть. Значит, первый брат дал четверть того, что было собрано без него. Значит, без него папа, брат и мальчик собрали четыре таких части, как дал он. Значит, с его вкладом было бы пять таких частей. А с его вкладом мы всю сумму как раз и получаем. Значит, первый брат дал 1\5 от всей суммы. 
Аналогично, 33 и 1\3% - это третья часть. Значит, без второго брата мальчик, первый брат и папа собрали три таких части, как дал второй брат. Значит, с ним - четыре части. Значит, от всей стоимости он дал 1\4, а папа 1\3. Вместе 47\60. Значит, мальчик собрал недостающую до целой суммы часть, то есть 52 рубля - 13\60. Цена фотоаппарата – 240 рублей.

Данный вид дидактической игры использовался неоднократно в учебном процессе и во внеурочной деятельности и каждый раз вызывал живую заинтересованность учащихся и повышение мотивированности к участию в игре.



Получите в подарок сайт учителя

Предмет: Математика

Категория: Мероприятия

Целевая аудитория: Прочее

Скачать
дидактическая игра-конкурс"Своя игра"

Автор: ОРЕШКИНА ЛАРИСА ВАСИЛЬЕВНА

Дата: 02.01.2015

Номер свидетельства: 149525


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1580 руб.
2640 руб.
1500 руб.
2500 руб.
1580 руб.
2640 руб.
1410 руб.
2350 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства